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Overview
•High-Level Robot Control: Operators will guide robots 
through abstract commands.
•Human-Robot Collaboration: Remote-controlled robots 
will handle heavy tasks, improving worker safety. Virtual 
Training Simulator: A digital twin will enable safe, remote 
training for operators.
•Remote Task Execution: Robots equipped with tactile 
sensors will perform precise tasks under remote control.
•Roadside Infrastructure Works: The system will be 
deployed to one of the task that require cooperative tasks.
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Fig. 1. a) Complete view of the gripper with the UR5e Robotics Arm; b) The gripper, integrated at the tip of the robotics arm; c) The experimental setup
used to collect torque dataset; d) Design of air chambers in silicone rubber

pair of interlocking gears molded into the arms themselves.

Moreover, the gripper integrates silicone-casted rubber com-

ponents (Ecoflex 00-20 from Smooth-On Inc), selected for

its exceptional flexibility in deformation to enhance knife

gripping and its structural rigidity for providing necessary

support to the knife.

Inside the rubber, four standalone air chambers (shown

in Fig. 1 (d)) are embedded, each connected to a pressure

sensor (NXP MPXH6300A) via an elastic hose. The pressure

signals, in voltage, are amplified and converted into digital

readings using an ADC (ADS1115). Subsequently, the pro-

cessed signals are transmitted at a high frequency via the

UART protocol to a PC.

These silicone rubbers play a pivotal role as a soft robotics

structure, with their distributed deformability allowing for

a theoretically infinite number of Degrees of Freedom (df)

[11]. This feature enhances the gripper’s capacity to establish

optimal contact with the knife. The system manages to

maintain a lightweight design, structural stability, and a soft

touch through a combination of plastic and elastic elements

[5] [12].

To introduce air chambers into the silicone rubber, a mold

was created using Stereolithography (SLA) 3D printing.

Additional components matching the geometry of the air

chambers were also printed and assembled with the mold.

B. Torque Estimation

The pressure in these integrated air chambers varies due

to the deformation of the rubber caused by external torque.

Hence, the torque can be inferred from the pressure readings

by recognizing underlying patterns. The application of a

recurrent neural network, such as Long Short-Term Memory

(LSTM), facilitates the creation of a precise torque estima-

tion model based on the time-varying pressure readings from

the embedded pressure sensors [13].

Fig. 2. Correlation analysis between normalized sensor readings and
corresponding torque values

Fig. 3. Schematic of the LSTM-Based Recurrent Neural Network (RNN)

The LSTM-based neural network model is designed to

convert pressure signals into torque readings while account-

ing for potential noise in the readings. The process involves

the following steps: 1) Gathering a dataset for training; 2)

Training and fine-tuning the structure of the LSTM-based

model; and 3) Implementing real-time testing on the gripper.

A total of 25 data batches are obtained by pressing the

gripped knife against a digital kitchen scale at a predeter-
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