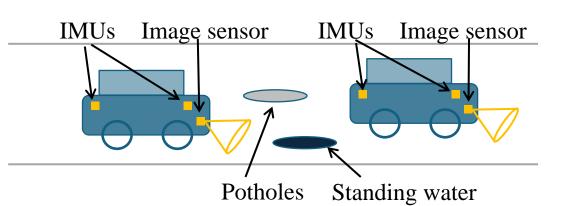


Al-assisted sensor-based road surface condition monitoring system

Dr. Xiang Wang*, Prof. Fumiya lida (supervisor), Prof. Ioannis Brilakis (second supervisor)

* Email: xw438@cam.ac.uk


Introduction

Road transportation is an important component of transportation. Numerous roads to be monitored are a challenge for the management by the authorities. Untimely road maintenance endangers the safety of drivers and vehicles. Low-cost and high-efficiency Road Surface Monitoring (RSM) becomes an important target for future roads. Conventional RSM systems have the disadvantages of high costs and difficulty to be improved.

Motivations

In this research, the applicant wants to develop a real-time sensor-based road surface monitoring system to provide road surface information to the vehicles, drivers, and road management teams.

Two targets: A) Sensor development B) Algorithm development

A. Sensor Design

Principle of the sensor:

Road condition prediction results:

Idea: stress concentration regions (cracks) will be visualised by the sensor's colours.

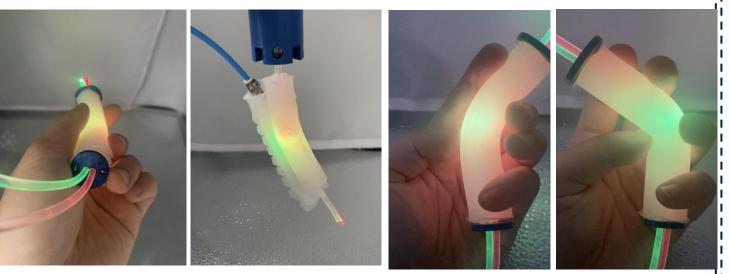


Fig. Designed soft continuum robot sensors with unlimited application potential

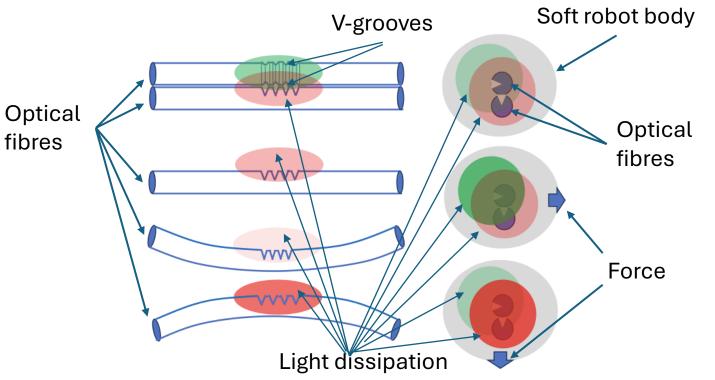
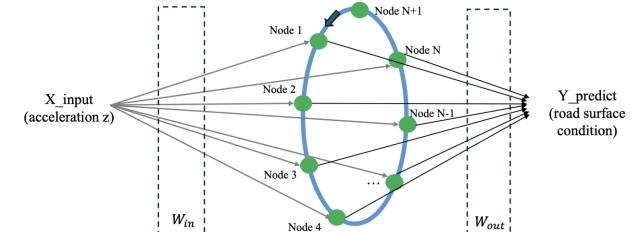
A universal soft strain sensor was designed as an indicator to show the local stress concentration regions (with colours) by being attached to the infrastructure (e.g. bridges or roads).

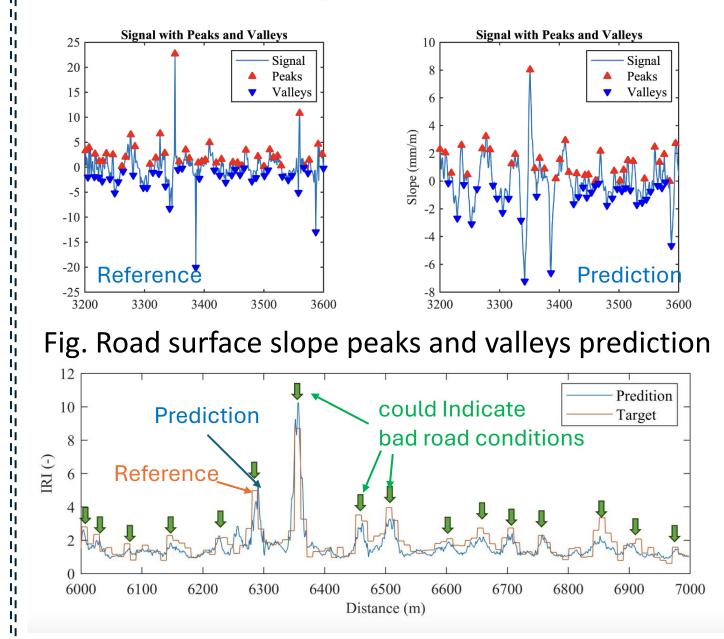
Manufacturing of the sensor:

Fig. Soft continuum robot sensor manufacturing process

The sensor was manufactured in a mound. From left to right, the figures show the micro-structures of the designed sensor, the optical fibre sensor alignment in a mould, and the curing processes of silicone rubber (Ecoflex-20).

Optical fibre sensors are designed in the soft continuum robot's body. The shape-changing of the soft robot shows different colours by mixing the light dissipation in the opaque silicone rubber.


Fig. The principle of colour mixing in a soft continuum robot

B. Algorithm Design

Idea: road surface monitoring with optical computing methods based on acceleration data from civilian vehicles.

A simplified diagram of optical computing for road surface monitoring is shown below (the blue circle in the middle represents an optical fibre)

Fig. International roughness index prediction

About 90% of road surface fluctuation peaks and valleys were predicted.

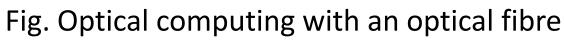
The accuracies of international roughness index prediction for 100 m and for 10 m were about 86% and 73%.

Advantages: it is a physical computing structure with fast-speed calculation.

This project:

1.Alignment with SDG:

SDG Target 3.6 - halve the number of global deaths and injuries from


road traffic accidents by 2030

2. The starting and expected end TRL levels:

TRL Level 1 (Starting): Basic Technology Research

TRL Level 3 (Expected): Analytical and experimental proof-of-concept

3.Industry secondment needs:

Actively looking for secondment opportunities **4.**Acknowledgement of dataset: No dataset used from Future Roads

ARCADIS

COLAS

What next?

European

Commission

- Continue research on road surface condition monitoring with conventional and unconventional sensors.
- Pavement monitoring (international roughness index)
- Pavement monitoring (friction)
- Developing sensors (including tyre sensors) for road condition monitoring

Acknowledgements

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 101034337.

References

Review of multimodal data and their applications for road maintenance, Smart Construction, 2024(2), pp. 1-39.

construction

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement number 101034337

