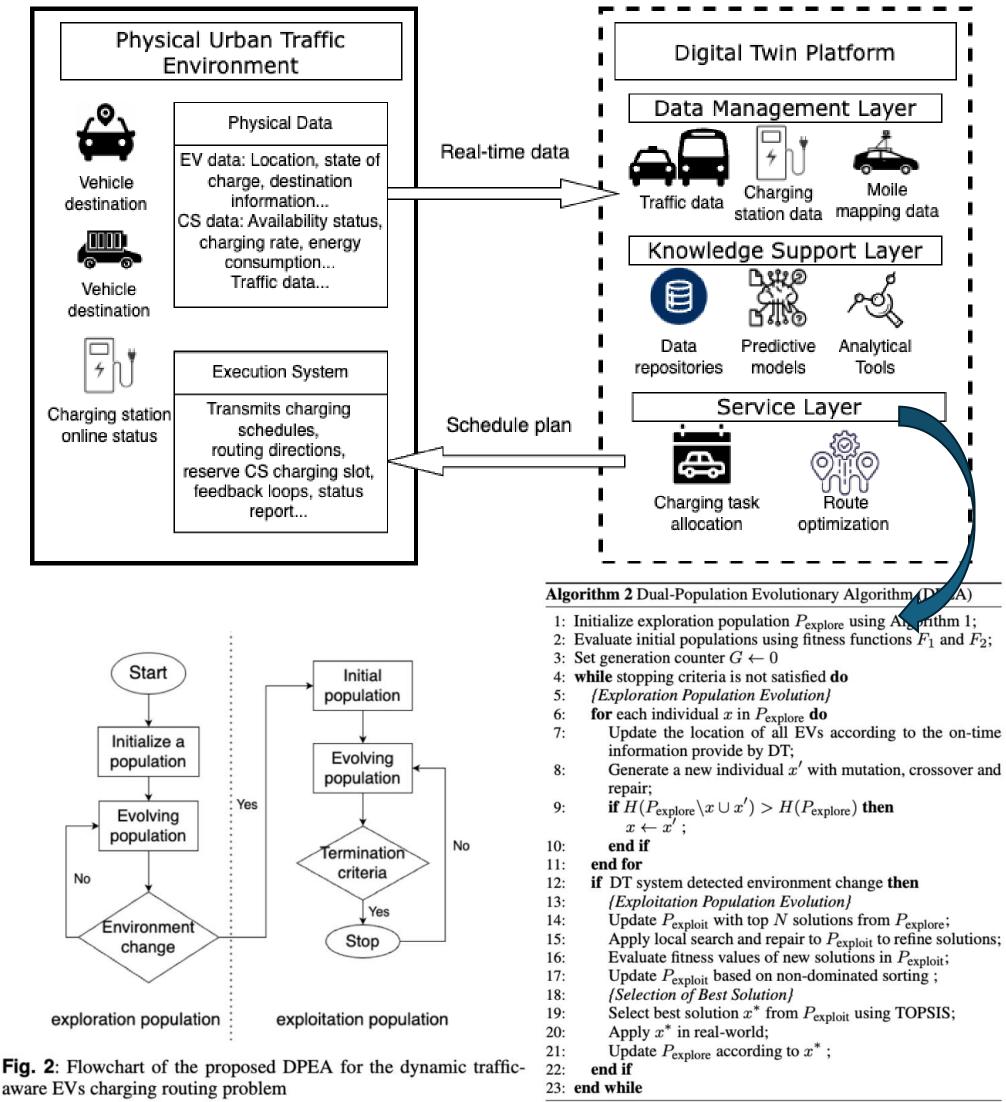


Highway intelligent traffic Management system

Yue Xie, Fumiya Iida, Ioannis Brilakis, Krzysztof Walas, Christopher Puttrell, Nicolette Formosa, Michael Schenk, Tom Tideswell, Chris Kettell, George

Background & Motivation

- Traffic Congestion: increasing congestion leads to longer travel time, fuel waste and pollution.
- Electric Vehicle Integration: the rise in EVs requires efficient charging and routing solutions.
- Intelligent Transport systems (ITS): Intelligent systems can address urban mobility, congestion, and environmental goals.


Research Goals:

- Multi-agent Traffic Management System: develop a system that considering EVs to reduce congestion and optimize routing and charging.
- Implement Adaptive Traffic Control: Design algorithms that adjust to diverse conditions, like road closures and seasonal maintenance.
- Integrate V2G for Energy Efficiency: Enable V2G communication to optimize EV charging and energy distribution.

Efficient Electric Vehicle Routing and Energy Allocation Through

System framework of the Digital Twin-based Electric

Vehicle Routing and Charging (DT-EVRC)

Multi-Objective Optimization

 The results show that integrating VRPTW and ED enhances operational efficiency, vehicle utilization, and costeffectiveness by optimizing routing and energy constraints.

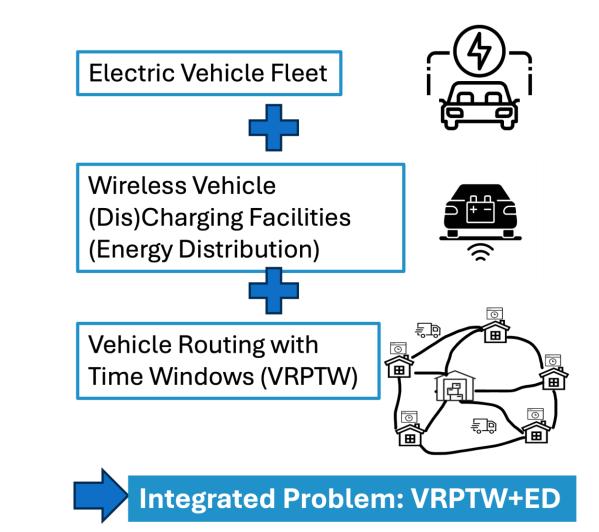


Table 3: Performance Comparison between VRPTW-ED, VRPTW, ED andVRPTW&ED, thebest objective valuesbetween VRPTW-ED and VRPTW&ED arehighlight.

F1: total energy cost	Instance	VRPTW-ED			VRPTW		ED			VRPTW + ED		
F2: total energy transmit	Instance	F1	F2	Vs	F1	Vs	F1	F2	Vs	F1	F2	Vs
		416.7	281.86	40	168.77	39	436.5	178.31	5	605.27	178.31	44
Vs: number of used vehi	Ç <u>∥</u> ₽S	850.8	222.80	38	133.00	35	651.3	179.94	7	784.30	179.94	42
	r2-4	636.9	241.22	25	74.46	25	412.8	174.72	6	487.26	174.72	31
	rc1-2	343.5	124.75	27	76.08	24	346.8	115.03	3	422.88	115.03	27
	rc2-4	392.4	279.69	31	177.95	34	289.2	202.42	5	467.15	202.42	39

 This research introduces DT-EVRC approach, combined with the Dual-Population Evolutionary Algorithm (DPEA), to optimize EV routing and charging in intelligent transportation systems.

Real-world case study:

Temporary traffic management

- Short-term Disruption Management: Prioritize real-time updates in the DT-EVRC system for temporary disruptions, directly communicating to drivers.
- Integration with Smartphone and In-Vehicle Displays: Provide dynamic guidance to promote adherence over static mapping apps.
- Driver Compliance Studies: Analyze driver adherence to DT-EVRC routes versus standard navigation apps.

Seasonal road

management:

- Comprehensive
 Seasonal Management
 Strategies
- Emergency and Hazard Alerts
- Coordination with Local Road Services.

Acknowledgements

This project has received
funding from the European
Union's Horizon 2020 research
and innovation programme
under the Marie SkłodowskaCurie grant agreement No
101034337.

