

Control of mixed autonomous vehicle-infrastructure in a heterogeneous multi-agent system framework

Kai-Fung Chu, Fumiya lida, Lavindra de Silva

Motivation

- UK is keen to roll out autonomous vehicles (AVs) on roads by 2025 with the support of new government plans and £100 million [1]
- Prevalence of CAVs is expected
- Traffic management strategy and infrastructure are needed to coordinate the disordered transportation system

Driver Intention Recognition

Understanding human driving intention for AVs control

Connected & Automated Mobility 2025: Realising the benefits of self-driving vehicles in the UK

Challenges – Mixed Autonomy

- AVs and human-driven vehicles co-exist
- How should AVs behave?
- How does infrastructure adapt to AVs?

Potential Issues

- Traffic efficiency
- Human-driven vehicles bullying
- Unethical autonomous driving

Generalizable within defined boundaries

- Classification problem:
 - scenes + action -> intention
- Indeed, human decision-making:
 - scenes + intention -> action
- Proposed inverse reinforcement learning-based intention inference method [2]
 - Accuracy increased by 6.2%

- Proposed a neural control barrier function [3]
 - Achieve safety by learning the state transition model
 - Without the need for a mathematical model

Moral Decision-Making

- Existing studies focus on binary moral scenarios like trolley problem
 - Can handle binary scenario only
 - Inherent unwanted human bias
- Proposed Thurstone-Mosteller Additive Neural Network [4]

- Able to disentangle the learned moral utility of the binary dataset to deal with complex moral scenario
- Mitigate human bias while following human preferences and compiles with regulation for sensitive attributes

What next?

- **Mixed Autonomy Control:**
- Traffic shockwave emerge in a vehicle fleet
- To control AVs in the vehicle fleet to attenuate traffic shockwave and congestion

Acknowledgements

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 101034337.

References

[1]: HM Government, "Connected & Automated Mobility 2025: Realising the benefits of self-driving vehicles in the UK," 2022.

[2]: K.-F. Chu, et al., "Complementary Adversarial Inverse Reinforcement Learning for Vision-Based Driving Multi-Intention Recognition," Under review.

[3]: C. Fan, K.-F. Chu, et al., "State Transition Learning with Limited Data for Safe Control of Switched Nonlinear Systems," Neural Networks, vol. 180, Dec 2024. [4]: A. Choudhry, K.-F. Chu, et al., "Mitigating Bias in Disentangled Moral Utility for Autonomous Vehicles Using Thurstone-Mosteller Learning", Under review.