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Motivation B Challenges — Mixed Autonomy

UK s keen to roll out autonomous vehicles e AVs and human-driven vehicles co-exist
(AVs) on roads by 2025 with the support of  \eii 500 Reaieng - * How should AVs behave?
new government plans and £100 million [1] wceenieok . How does infrastructure adapt to AVs?

* Prevalence of CAVs is expected

* Traffic management strategy and
infrastructure are needed to coordinate the
disordered transportation system

Potential Issues

* Traffic efficiency

* Human-driven vehicles bullying
 Unethical autonomous driving

e

Driver Intention Recognition | Hybrid Safe Control
 Understanding human driving * Hybrid safe control approaches
intention for AVs control  Generalizable within defined boundaries
e C(lassification problem: * Proposed a neural control barrier function [3]
* scenes + action -> intention * Achieve safety by learning the state
* Indeed, human decision-making: transition model
* scenes + intention -> action * Without the need for a mathematical model
* Proposed inverse reinforcement
learning-based intention :Moral Decision-Making

inference method [2]
 Accuracy increased by 6.2%

* Existing studies focus on binary moral
scenarios like trolley problem
 Can handle binary scenario only
* Inherent unwanted human bias

* Proposed Thurstone-Mosteller Additive
Neural Network [4]

 Able to disentangle the learned moral utility of the binary dataset to

= deal with complex moral scenario
sra  Mitigate human bias while following human preferences and
Fo(sr-2,a7-2) Fosr-1,a7-1) compiles with regulation for sensitive attributes
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