

A Multi-Agent System for heavy machine operation through context aware sensor fusion

Chapa Sirithunge, Fumiya Iida, Ioannis Brilakis

Objectives

The objective of this research aims to implement algorithms that can effectively handle **complex**, **dynamic environments** and ensure **safe**, **cooperative behavior** among multiple agents including machines, humans and robots.

This context represent heavy machines, humans, other machinery, sensory equipment and human-machine interfaces.

Background

Construction industry accounts for more than 20% of fatal workrelated injuries in the UK. Hence safety around the machinery in construction has to be improved.

Research Outcomes

Recognising algorithms which

Current Progress

Components in the proposed concept simulate complex environment dynamics in construction environments

This creates a platform for humans and machines to interact with each other effectively and safely. are effective for complex work environments

- Simulation of dynamic environments with priority to safety and machinery
- Recognising human aspects in machine safety and construction environments

Machine Simulations including information transfer, sensor coverage and machine dynamics

Human multi-robot teamingimplementation with robots

Human-robot cooptimisation approaches

What next?

The upcoming 12 months will be spent on

- Improving and testing simulations with the maximum coverage over machine dynamics related to heavy machines
- Investigation of implementing simplified MAS with the integration of Human-Machine Co-operation techniques
- Integeration of sensory requirements to represent environment dynamics in construction environments.

Acknowledgements

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 101034337.

References

 [1] Baduge et. al. Artificial intelligence and smart vision for building and construction 4.0: Machine and deep learning methods and applications.
Automation in Construction. 2022 Sep 1;141:104440.

[2] Kurinov, G. Orzechowski, P. Hämäläinen and A. Mikkola, "Automated Excavator Based on Reinforcement Learning and Multibody System Dynamics," in IEEE Access, vol. 8, pp. 213998-214006, 2020.

European Commission

